hash算法(原理)
哈希 Hash 算法介绍
哈希算法也叫散列算法, 不过英文单词都是 Hash, 简单一句话概括, 就是可以把任意长度的输入信息通过算法变换成固定长度的输出信息, 输出信息也就是哈希值, 通常哈希值的格式是16进制或者是10进制, 比如下面的使用 md5 哈希算法的示例
md5("123456") => "e10adc3949ba59abbe56e057f20f883e"
主要特点:
-
不可逆 从哈希值不能推导出原始数据, 所以Hash算法广泛应用在现代密码体系中
-
无碰撞 不同的信息进行哈希后得到的值应该是不同的, 但是从理论上来说, 哈希算法其实是有可能发生碰撞的, 输入的信息是无穷的, 而输出的哈希值长度是固定的, 所以是有限的。好比要把10个苹果放到9个抽屉里面, 肯定会有一个抽屉装了多个苹果, 只不过哈希算法的碰撞的概率是非常小的, 比如128位的哈希值, 就有2的128次方的空间。
-
效率高 在处理比较大的原生值时, 也能能快速的计算出哈希值
-
无规律 原始输入信息修改一点信息, 得到的哈希值也是大不相同的
哈希算法的实现有很多, 常见的有 MD5, SHA-1, 还有像 C#, Java 一些语言都有直接的 GetHashCode(), hashCode() 函数可以直接来用。
分布式存储场景
在互联网场景中, 通常面对的都是海量的数据,海量的用户, 那为了要满足大量数据的写入和查询, 以及高可用, 一台单机的存储服务器肯定是不能满足需求的, 通常需要使用多台服务器形成分布式存储。
场景描述:
在本文中, 为了方便大家更好的理解, 这里列出了一个简单的例子, 有三位用户, 分别是 James、 Bob、 Lee, 我们需要把用户的图片写入到存储服务器节点, 这里有ABC三个节点, 而且当查询用户的图片时, 还需要快速定位到这个用户的图片是在哪个节点存储的, 然后直接从这个节点进行查询, 需要满足高效率的查询。
实现思路:
首先,我们可以对用户标识进行 Hash 计算, 这里我为了方便演示, 使用了用户名作为Hash对象, 当然你还可以对用户的IP或者是UserId 进行Hash计算, Hash计算后会生成一个int类型的数字, 然后再根据存储节点的数量进行取模, 这里的公式就是 hash(name) % 3, 计算得出的结果只有三种情况, 分别是 0,1,2, 然后我们再把这三种结果和三个存储节点做一个映射, 0 ==> A, 1 ==> B, 2 == C。 因为Hash算法对一个值多次计算后都会得到同样的hash值, 所以上面的公式, 一个用户的图片每次都会固定的写入的其中一个节点, 这样做查询的话, 也可以通过hash算法快速找到这个用户的图片所在的节点。